Mathematical Epidemiology: Models and Analysis
系列讲座(6月11日---6月27日) 
主讲人:  Michael Y. Li教授
主讲人单位:加拿大Alberta University  
时间地点待定
具体内容如下,欢迎参加
    1  Introduction 
       1.1  Mathematical modeling of infectious diseases: issues and approaches
       1.2  Deterministic epidemic models: compartmental approach 
       1.3  An example: the models of Kermack-McKendrick
       1.4  Important concepts in compartmental models
    2  Mathematical Analysis 
       2.1  Kermack-McKendrick model 
       2.2  A model for disease with no immunity
       2.3  A model with demography 
       2.4  A SIR model with varying total population - homogeneous systems
       2.5  Ross-MacDonald model for Malaria - a monotone system
    3  Basic Tools and Techniques 
       3.1  Stability of equilibrium solutions
       3.2  Stability analysis by linearization
       3.3  Stability analysis using Lyapunov functions
       3.4  Stability of periodic solutions: the Floquet theory
       3.5  Global dynamics of 1-dimensional systems: phase-line analysis
       3.6  Global dynamics of 2-dimensional systems: phase-plane analysis
       3.7  Metzler matrices and monotone systems 
    4  Nonlinear Least-Square Problem 
       4.1  Curve fitting and linear least-square problem 
       4.2  Nonlinear least-square problem 
       4.3  Parameter identification for epidemic models